The function plots the effect size plot and volcano plot based on the output from linda
.
Usage
linda.plot(
linda.obj,
variables.plot,
titles = NULL,
alpha = 0.05,
lfc.cut = 1,
legend = FALSE,
directory = NULL,
width = 11,
height = 8
)
Arguments
- linda.obj
return from function
linda
.- variables.plot
vector; variables whose results are to be plotted. For example, suppose the return value
variables
is equal to('x1', 'x2', 'x3b', 'x3c', 'x1:x2')
, then one could setvariables.plot = c('x3b', 'x1:x2')
.- titles
vector; titles of the effect size plot and volcano plot for each variable in
variables.plot
. Default is NULL. If NULL, the titles will be set asvariables.plot
.- alpha
a real value between 0 and 1; cutoff for
padj
.- lfc.cut
a positive value; cutoff for
log2FoldChange
.- legend
TRUE or FALSE; whether to show the legends of the effect size plot and volcano plot.
- directory
character; the directory to save the figures, e.g.,
getwd()
. Default is NULL. If NULL, figures will not be saved.- width
the width of the graphics region in inches. See R function
pdf
.- height
the height of the graphics region in inches. See R function
pdf
.
Value
A list of ggplot2
objects.
- plot.lfc
a list of effect size plots. Each plot corresponds to one variable in
variables.plot
.- plot.volcano
a list of volcano plots. Each plot corresponds to one variable in
variables.plot
.
References
Huijuan Zhou, Kejun He, Jun Chen, and Xianyang Zhang. LinDA: Linear Models for Differential Abundance Analysis of Microbiome Compositional Data.
Author
Huijuan Zhou huijuanzhou2019@gmail.com Jun Chen Chen.Jun2@mayo.edu Maintainer: Huijuan Zhou
Examples
if (FALSE) { # \dontrun{
library(ggrepel)
data(smokers)
ind <- smokers$meta$AIRWAYSITE == "Throat"
otu.tab <- as.data.frame(smokers$otu[, ind])
meta <- cbind.data.frame(
Smoke = factor(smokers$meta$SMOKER[ind]),
Sex = factor(smokers$meta$SEX[ind]),
Site = factor(smokers$meta$SIDEOFBODY[ind]),
SubjectID = factor(smokers$meta$HOST_SUBJECT_ID[ind])
)
ind1 <- which(meta$Site == "Left")
res.left <- linda(otu.tab[, ind1], meta[ind1, ],
formula = "~Smoke+Sex"
)
ind2 <- which(meta$Site == "Right")
res.right <- linda(otu.tab[, ind2], meta[ind2, ],
formula = "~Smoke+Sex"
)
rownames(res.left$output[[1]])[which(res.left$output[[1]]$reject)]
rownames(res.right$output[[1]])[which(res.right$output[[1]]$reject)]
linda.obj <- linda(otu.tab, meta,
formula = "~Smoke+Sex+(1|SubjectID)"
)
} # }